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ABSTRACT

The space cable consists of evacuated tubes supported by fast-moving objects, called bolts, travelling inside them. The
bolts are connected to the tubes via permanent magnets stabilized electronically for minimal power consumption. Ver-
sion 1 was designed to replace the role of a first-stage rocket by lifting space vehicles from the ground to 50 km at 5800
km/hour. Version 2 rises to 140 km and has wider applications. Comparable proposals include the space fountain and
the launch loop. In the long term, such fixed infrastructure is more economical than rockets.

A key issue with these dynamically supported structures is lateral stability, particularly in the presence of varying cross
winds in the stratosphere. The relevant partial differential equations are derived below with a set of solutions. A pro-
posal is presented for providing stability by means of tethers, pipes, and a support structure at each end. Each support is
a miniature space cable rising to 15 km, and it bears the load of the tethers and pipes that would otherwise have to be
carried by the main structure.

INTRODUCTION

To escape the earth’s gravity well, there are advan-
tages in building a fixed infrastructure rather than
using rockets. Among these advantages are:

1. Low cost per journey because there is a much
reduced need to carry fuel and reaction mass

2. Low energy consumption and pollution
3. Enablement of gentle rides that allow wide sec-

tions of the public to visit space without the need
for special training or high fitness

The most famous form of fixed infrastructure pro-
posed is the space elevator.1 The challenge with that
idea is to find a strong enough material capable of
forming long threads. An alternative form of fixed
infrastructure was proposed in 1980 to overcome this
problem.2 Called the space fountain, it relies on pel-
lets, which are fast projectiles travelling inside evacu-
ated tubes. Coils in the tubes decelerate the rising
pellets and accelerate the falling ones, thus causing an
upward force that supports the weight of the tubes and
of any vehicles. Further work (renamed Starbridge3)
showed that the energy consumption of the space
fountain is unfortunately very high.

Both the space elevator and the space fountain involve
a vertical structure reaching to geostationary orbit.
Vehicles reach orbit when they attain that height, a
process that could take hours or days. Lofstrom4 pro-
posed the launch loop, which consists of a belt travel-
ling at 14 km/sec, reaching a height of about 80 km
and extending over 2000 km of the earth’s surface.
This is much more efficient than the space fountain at
getting vehicles out of the earth’s atmosphere and into
orbit.

The space cable is smaller than the launch loop and
should therefore cost less.5 The first version was de-
signed to replace the role of first-stage rockets by ac-
celerating a rocket’s upper stages to 5800 km/h at a
height of 50 km. Another version of the space cable is
described here that reaches to near space (140 km) and
is suitable for astronomy and other science and also
for space tourism. Version 2 is about three times as
expensive as the first, but it has many more uses.
Figure 1 shows a size comparison.

Version 1Version 2

Figure 1 Size comparison between versions

In the space fountain, the launch loop and the space
cable, energy and momentum are transferred electro-
magnetically from the travelling pellets, belt or bolts
to the accelerating vehicle. This overcomes the prob-
lem in the space elevator of transmitting power to the
vehicle.

One of the questions with these proposals is how to
achieve stability. The troposphere and stratosphere can
be very turbulent, and the winds are strong. The
launch loop requires tethers to be attached at certain
points and anchored to the earth’s surface to stabilize
it. One problem with this approach is that the tethers
cause substantial extra tension in the space cable, and
this leads to greatly increased forces and costs. This
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problem can be overcome by erecting a pair of support
structures, which are miniature space cables, to a
height of 15 km. This is an adaptation of a means of
deflecting the space cable at the surface stations, de-
scribed in Version 1. That work did not deal with the
oscillation modes. Now, the oscillations are examined.
We present equations for this motion and show how
support, tethers and pipes can provide the necessary
stability.

SPACE CABLE VERSION 1

The space cable consists of several pairs of evacuated
tubes in which fast-moving projectiles, known as
bolts, support the weight. The tubes have a diameter of
5 cm and, in version 1, reach a height of 50 km while
covering a distance on the ground of 150 km. Mag-
netic levitation is used to maintain a practically fric-
tionless connection between the bolts and the tubes. At
each end there is a surface station that has the job of
initially accelerating the bolts and then, when they
return, of turning them around again. The surface sta-
tions may be on the ground or at sea.
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Figure 2 Plan view of surface station with ambit

At each surface station, there is a gantry and tunnel
(Figure 2). They turn the descending bolts to the hori-
zontal and pass them to a circular arrangement of su-
perconducting magnets called the ambit. The radius of
the ambit is 330 metres, and the bolts’ velocity is up to
2.5 km/sec. The bolts proceed back along the ramp
and up into a tube at an angle of 56° to the horizontal.
The tubes are paired: one carries descending and one
carries ascending bolts.

Levitation Force
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Figure 3 Space cable shape and distribution of forces

As illustrated in Figure 3, the shape of the space cable
resembles that of an inverted catenary; the exact equa-
tion is given in reference 5. Magnetic levitation be-
tween a tube and the bolts inside it causes a force per-
pendicular to the bolts’ direction of travel. This force
supports the tube and consequently lowers the bolts’
trajectory as if the weight of each bolt had increased.
In the lower parts of the tube, the force is at an angle
and only supports part of the tube’s weight. The rest of
the weight is sustained by tension in the tube, which
transfers the force to the top. At the top, the bolts are
travelling nearly horizontally and support the whole
weight of the tube there.  They also support part of the
weight of the lower parts of the tube. Figure 3 shows
the relative forces at different points.

This arrangement, whereby the forces are perpendicu-
lar to the bolts’ motion, is different from that of the
space fountain, where bolts have to be retarded or
accelerated to support the tubes. This is how the space
cable avoids the heavy losses caused by heating of the
coils in the space fountain.

The space cable makes further substantial energy sav-
ings by using a novel application of permanent mag-
nets to magnetic levitation. Permanent magnets have
been demonstrated successfully in magnetic bearings6

and in a prototype train technology known as Induc-
track.7 The space cable takes this method further to
minimize the losses due to eddy currents, as described
in reference 5.

SPACE CABLE VERSION 2

Version 1 was aimed at reducing the cost of launching
space vehicles. Version 2 reaches almost three times
as high – to 140 km – which is near space rather than
in the upper atmosphere. Version 2 can still be used
for launching space vehicles, but it is high enough to
enable other applications. Many earth satellites are
placed in orbit for scientific work, the most famous
being the Hubble space telescope. However, at 140 km
the space cable can provide a platform for science with
many advantages over satellites. The biggest advan-
tage is that instruments can be raised or lowered easily
for upgrade and maintenance; they can even be ac-
cessed in place. Consider how beneficial that would
have been when errors were discovered in the Hub-
ble’s mirror. The cost of producing such instruments
can be drastically lowered if they can be accessed
readily after deployment.

Another potential revenue earner is tourism. Like the
space elevator, the space cable can transport people to
near space at a gentle 150 km/hour, making the expe-
rience accessible to a wide public. For those customers
wanting the thrill of weightlessness and reentry, it is
quite feasible to build vehicles that can drop back into
the atmosphere and glide or fly home. The reentry
velocity into the atmosphere from being stationary at
140km is about 3000 km/h – much less violent than
reentry from orbit.
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Version 2 achieves the greater height by doubling the
bolts’ mass to 10 kg and increasing their velocity to
3.4 km/sec. The ambit radius becomes 600 metres.
The angle of inclination at the surface stations is 74°.

The greatest change is the tension in the tubes. The
preferred material is Kevlar®*, because it is widely
used and reasonably priced. In version 1, up to 4.5 kg
of Kevlar® per metre is needed to sustain the tension,
but this increases to 19 kg per metre at the top in ver-
sion 2. In both cases, a factor of four is included as a
safety margin, as is customary engineering practice.

The height of 140 km is carefully chosen; above this
height, the exponential factor in equation (3) (see sec-
tion “Calculations”) kicks in more severely. At 200
km, for example, 46 kg per metre would be needed
with a bolt velocity of 10 km/sec, leading to substan-
tial increases in ambit size and other costs. Another
advantage of the altitude of 140 km is that it is below
the level at which space debris is known to orbit. Ob-
jects orbiting at this height fall to earth rapidly.

Calculations
The equations are similar to those previously reported
except for two changes. In version 1, a constant tube
weight per metre was assumed that was sufficient to
sustain the maximum tension. In version 2, the tube
weight varies by a factor of 10 and must be calculated
explicitly. Furthermore, the additional height makes it
worth taking into account the reduced gravity, which
was neglected in version 1.

Define α=4ρ/S, where ρ =1.47×103 kg/m3 is the den-
sity of Kevlar®, S=3450 MegaPascal (MPa) is its
strength, and 4 is the safety factor. The weight w of the
tube per metre is given by

( )gmTw t+= α (1)
Here mt is the mass of the tube due to magnets and
other materials, g is the acceleration due to gravity,
and T is the tension, which also satisfies

0

0

TwdrT
r

+= ∫ (2)

Here T0 is the tension at ground level, r is the distance
from the centre of the earth, and r0 is the value of r at
ground level. The solution to these equations is
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and
( ) ( )grr

t gemTw 0
0

−+= αα (4)

* Kevlar® is a Dupont registered trademark. See
MatWeb Material Property Data at URL
www.matweb.com

If g0 is the acceleration due to gravity at ground level,
then 22
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As in version 1, it has the form
),( rrfr &&& = (6)

This can be solved numerically in the same way using
the Runga-Kutta method.

In equation (5), a dot denotes differentiation with re-
spect to time. The angle θ is that subtended at the cen-
tre of the earth in plane polar coordinates. The con-
stant C is given by 00 VmsC b= , where s0 is the
spacing between bolts at ground level, mb is the mass
of a bolt, and V0 is the velocity of a bolt at ground
level. The symbols q and u are given by:
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We also have
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STABILITY

A wind blowing across the space cable will deflect it.
If the winds were predictable and steady, the surface
stations could compensate by deflecting the cable in
the opposite direction. However, winds are often gusty
or turbulent, and this leads to oscillations. Analysis of
the equations (section “Derivation of the Stability
Equations”) shows that there are solutions that involve
waves that travel along the tubes at the velocity of the
bolts, but there are also solutions with positive and
negative exponential terms. The positive exponential
terms often dominate, which means that, once the
space cable has bent beyond a certain curvature, its
rate of bending increases indefinitely.

At heights above about 12 km, the air is still. The
problems occur below that height, particularly when
there are strong jet-stream winds. In the launch loop,
the proposed solution is to fix tethers from the cable
down to the ground. However, this places considerable
extra weight on the overall structure, requiring sub-
stantially thicker cables because of the exponential law
in equation (3). In version 2 of the space cable, the
effect of this extra weight is to double the thickness of
Kevlar® needed at the top, substantially increasing the
bolt velocity and hence the ambit radius, and requiring
over four times the permanent-magnet strength in the
upper parts of each tube.
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Figure 4 Impression of support and tethers

A more economical solution is to erect a support
structure near each surface station (Figure 4). Each
support is a space cable in miniature; it stands at right
angles to the main space cable. The main space cable
is tethered to the supports, not to the ground. Each
support’s height of 15 km is designed so that the teth-
ers and support carry the weight of the space cable up
to this height. They also carry the weight of alumin-
ium pipes provided to give extra stiffness. Some teth-
ers are at 45° while others are vertical.

The support has to be tethered to the ground, and it
carries the weight of its own tethers, but this avoids
the cumulative effect of transmitting the weight to the
top of the space cable. The details are in the next sec-
tions.

Derivation of the Stability Equations
To understand the effect of external forces (mainly
wind) on the space cable, we can derive partial differ-
ential equations as follows.

Consider two points A and B close together on a
curved tube (Figure 5). If a bolt reaches A at time t, it
reaches B at time tt δ+ . Then the distance between A
and B is

tVx δδ = (11)

z(x,t)

z(x,t+δt) 

z(x+δx, t)

z(x+δx,t+δt)
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x
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A

Figure 5 Displacements as a bolt travels from A to B

Between A and B, the displacement of the bolt is
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In the limit, this equation becomes
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This leads to the equation for a bolt’s acceleration
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A pair of tubes is connected by damped elastic struts
positioned every u metres. If a bolt’s mass is mb and
their separation is s, it is convenient to consider an
average bolt mass mb per u metres. Then the force at a
strut caused by the bolts’ acceleration in one tube is
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To this must be added the force due to the tube’s ac-

celeration 2

2

t
zmt ∂

∂ .

Writing mu=mb+mt, the force Fa due to acceleration of
the bolts and the tube is given by
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Figure 6 Contribution of tension

Balancing Fa are three more forces, an external force
F generally due to wind, a force Fs in the strut and the
tension T in the tube. The contribution of the tension
(Figure 6) over the angle ψ between points A and B
distance u apart is Tsinψ. For small u compared with
the radius of curvature R, we have a force

RTuTT −≈−≈− ψψsin
Then the force due to tension at a strut is given by
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The balance of forces at one end of a strut is given by
sTa FFFF ++= (18)

A strut connects two tubes in which the bolt velocities
are equal and opposite. Writing z1 for the z-
displacement in one tube and z2 for the other, we com-
bine equations (16), (17) and (18) to obtain the fol-
lowing pair of simultaneous partial differential equa-
tions for a pair of tubes connected by a strut
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The first term in these equations is the straightforward
acceleration of the tubes and bolts, independent of the
motion of the bolts. The third term represents an effect
due to curvature, moderated by tension. Once a tube
starts to bend, the bolts’ momentum tends to resist
turning, thus exerting an outward force that causes the
bend to increase indefinitely. The second term in
equations (19) and (20) represents a propagation effect
carried along by the bolts at velocity V. If the struts are
rigid, then Lzz += 21 , and there is no propagation.
However, with elasticity and damping in the struts, a
degree of play is possible. The overall effect is that the
bending of the tubes due to a localized wind is spread
along the tubes in both directions rather than being
concentrated in one place. This slows the rate of
bending and reduces the acuteness of the instability.

If L is the nominal length of a strut, ε is its expansion
coefficient, and p is the damping coefficient, the force
in a strut is given by

( )εLzzp
t
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When F=0, the equations have solutions of the form
( ) LBeeAez VxVxt

2
1

1 ++= − αγαγα (22)

( ) LBeeAez VxVxt
2
1

2 −+±= − αγαγα (23)
These satisfy the physical expectation of symmetry,
given the opposing velocities in a pair of tubes. We
can solve for B and α, leaving A and γ as free vari-
ables. One form of the solution leads to travelling
waves at the bolts’ velocity, but the real exponential
terms require further examination. Write

( )22
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This leads to the following equations for B and α:
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This quadratic equation in α has the solution:
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The quantity γ is a free variable, which may be com-
plex. Therefore, we can make no assumptions about
the sign of the real part of α. Since real positive values
of α are possible, these will tend to dominate, leading
to exponential growth in the deformation of the space
cable when winds disturb it. For this reason, the sup-
ports described in section “Support Structure” are
proposed.

Support Structure
In equations (19) and (20), the dominant factor tends

to be 2

2
2

x
zVmb ∂

∂ .  The greater the curvature of a tube,

the more centrifugal force is created as bolts travel
round the curve at velocity V. Previous calculations
(reference 5) have shown that a likely maximum wind
force on a tube is about 50N. The introduction of an
aluminium pipe increases this to about 100N. The
arrangement of tethers and supports needs to cope
with this force plus the centrifugal effect, but that
effect needs to be limited by adding stiffness to the
tubes at the elevations at which winds occur, typically
up to 12 km. 15 km is taken as a safer working as-
sumption.

The added stiffness is provided by attaching an alu-
minium pipe to each tube comprising the space cable.
The proposed mass of this stiffening pipe is 40
kg/metre, as shown in section “Calculations for
Pipes.”

Fine tethers that are closely spaced are more effective
than coarse tethers widely spaced. The wider the
spacing, the greater is the reliance placed on the stiff-
ening pipe. A pair of tethers every metre is proposed,
at an angle of 45° to the tubes, with one on the right
and one on the left. These are sloping tethers, and they
rise from the main cable to the support. The combina-
tion of tethers and the support hold the weight of the
stiffening pipes and also provide lateral stability. The
proposed material for the tethers is Kevlar®. The av-
erage weight of a pair of sloping tethers is 280 N (see
section “Calculations for Tethers”). Because of the
angle of the support, the average spacing of these is
about 1.2 metres, giving an average load per metre of
240 N or nearly 24 kg.

To minimize sagging of the sloping tethers, vertical
tethers are placed at 1 km intervals along each sloping
tether. Overall, the tethers form a network, with the
vertical tethers bearing the weight of the sloping teth-
ers. The load per metre of the vertical tethers works
out at 42 N (see section “Calculations for Tethers”).

The net effect of the arrangements of tethers is to keep
the movement under strong winds below 2.5 metres
(see section “Expansion and Displacement”).
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There is a support at each end of the space cable, and
they are themselves space cables in miniature. Each
support is stabilized by being tethered to the ground.
In addition to bearing the load of the stiffening pipes
and tethers, it must bear the forces in these ground-
attached tethers. These forces are in balance, and so
the effect of the ground-attached tethers is to double
the load on the support. Furthermore, the support re-
quires its own stiffening pipes at 40 kg/metre. The net
effect is to place a load of 140 kg/metre on the sup-
port. Using the methods of the section “Space Cable
Version 2”, this leads to a bolt velocity in the support
of 3.1 km/sec. The ambit radius for the support is 500
metres. The support rises to 15 km and also extends
over a horizontal range of 15 km.

The next section gives the details by which these
numbers are calculated.

Calculations for Tethers
Each pair of sloping tethers bears the weight of a me-
tre length of pipe, about 40 kg, amounting to nearly
200 N on each tether. In the mid position, they also
bear equal and opposite tensions of 200 N, giving a
total tension of 200√2, or nearly 300N. Under cross
winds, they will move laterally, so that either of them
may bear nearly the whole load, up to 400 N horizon-
tally and the same vertically. This increases the total
tension from about 300 N to about 600 N.

The weight w of a tether of height h required to sup-
port tension T satisfies

S
whTgw )(4 +

=
ρ (28)

Here, S is the strength (3450 MPa), ρ is the density
(1.47×103 kg/m3), g is the acceleration due to gravity,
and 4 is a safety factor. Hence w=1.4×10-2 N/metre for
a sloping tether. Hence the weight of an average 10
km tether is 140 N or 280 N per pair, as stated in sec-
tion “Support Structure”.

A vertical tether of a typical 10 km height supports
10,000 sloping tethers, giving a maximum tension of
1.4×105 N, requiring a weight of 3 N/metre or 3×104 N
altogether. The vertical tethers are spaced along the
support at intervals of approximately 700 metres, and
so the average load per metre on the support is 42 N,
as stated in section “Support Structure”.

Expansion and Displacement
As the tension increases, a tether expands according to
the formula

E
Tle
σ

= (29)

Here, e is the extension in metres, l is the length with-
out tension, σ=w/ρ is the area of cross section, and E is
the modulus of elasticity (179 Gpa). For a tension
increasing from 300 N to 600 N in a cross wind, the
extension of a sloping tether comes to 1.7 metres.

A sloping tether forms a catenary, and increased ten-
sion changes the geometry, leading to further move-
ment that must be added to the extension. If χA and χB
are the horizontal displacements at the top and bottom
of the catenary, and H is the horizontal component of
the tension, then the length l and height h satisfy8
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Using standard equalities for hyperbolic functions
including
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The presence of the vertical tethers enables us to con-
sider each length of 1km separately. Since l≈h√2 at
45° slope, the value of the right-hand side when
H=200 is approximately 0.02. If the tension doubles,
this value reduces to 0.01. If χ'A and χ'B are the
equivalent displacements when H doubles, we obtain
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χχ (34)

This gives a horizontal displacement of 0.5 metre over
a typical 10 km height.

Added to the expansion effect of equation (29), the
total movement under the increased tension is under
2.5 metres, as stated in section “Support Structure”.

Calculations for Pipes
The final consideration for stability is the force on a
tube caused by its curvature as bolts travel through it
at velocity V.  As in equation (19), this is

2

2
2

x
zVmF bc ∂

∂
= (35)

This force is added to the external force Fw due to
wind to give F=Fc+Fw.

Now the deflection of a tube of length K under a load
of F Newtons per metre is given by9

22

2

2

2 FKxFx
x
zEI −=

∂
∂ (36)

Here, I is the moment of area. For a tube of inner and
outer radii r1 and r2, I is given by

8
)( 4

2
4

1 rrI −
=
π (37)

Combining (35) and (36), we can obtain an overall
force per metre for a length K of tube between tethers
by integrating Fc to give
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Previous calculations (see section “Support Structure”)
showed the maximum force in a jetstream wind to be
about 100 N. The tether calculations were based on a
maximum lateral force of 400 N, a ratio of 4:1, so we
want to set

wwc FFFF 4=+′= (39)
Combining equations (39) and (38) gives

E
KVmrr b

π9
8 22

4
2

4
1 =− (1.1)

Taking E=7×1010 Pa for aluminium, K=1 metre, r2=4
cm, and V and mb as before (V=3.4×103 m/sec, mb=10
kg), we obtain an outer radius r1 of 8.5 cm. Since the
mass per metre is ρπ(r1

2- r2
2), and ρ=2.6×103 kg/m3,

we obtain a mass per metre of 40 kg, as stated in the
section “Support Structure”.

CONCLUSION

This approach to the problem of stability in the space
cable is rather heavyweight. It only deals with lateral
stability, which is the most significant problem. Over-
all, the space cable is vertically stable because of the
influence of gravity, but vertical oscillations still need
to be accounted for.

In principle, with a constant cross wind, it is possible
to align the space cable so that its curvature exactly
counteracts that cross wind; this means deflecting the
cable towards the wind so that the wind pushes it back
into line. However, such stable conditions are rare, and
it has not proved possible to devise a dynamic scheme
to take advantage of this idea.

Another area of concern is the possibility of perturba-
tions above the level of the proposed tethers and sup-
ports. As there is little air movement at these altitudes
and the air is very thin, there is less of a problem.
However, over the long term, some disturbances are
likely at very high altitudes, and a suitable means must
be devised to deal with them.

This report presents work in progress. Further investi-
gation may lead to other solutions.
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