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ABSTRACT

The space cable is a variation on the launch loop. It consists of evacuated tubes supported by fast-moving objects,
called bolts, travelling inside them. The bolts use magnetic levitation to support the tubes. Version 1 was designed to
replace the role of a first-stage rocket by lifting space vehicles from the ground to 50 km at 5800 km/hour. Version 2
rises to 140 km and has wider applications.

A key issue with such dynamically supported structures is lateral stability, particularly in the presence of varying cross
winds in the stratosphere. A solution has now been found to the relevant partial differential equation that makes it pos-
sible to ensure stability without the need for heavy tethers and pipes. Rather, the electromagnets in the bolts can be used
with suitable electronic control. The ancillary support structures only need to be about 400 metres high, a factor of 35
reduction over the previous solution.

INTRODUCTION

The space cable1 is a variant of the launch loop,2
which is itself a variant of the space elevator.3 The
space cable is supported by fast-travelling projectiles,
called bolts. The bolts travel inside tubes, which are
evacuated. To eliminate friction, the bolts are coupled
to the tubes using magnetic levitation.

The space cable is supported from two surface sta-
tions, either on the land or at sea. Two versions have
been described. Version 1 rises to a height of 50 km
and covers a range between the two surface stations of
150 km. Version 2 reaches a height of 140 km over
approximately the same range. Version 2 is about
three times as expensive to build as Version 1. Both
are considerably smaller than the launch loop, which
requires a range of 2000 km.

The main purpose of the space cable is to reduce the
cost of launching vehicles and payloads into orbit.
Version 1 is designed to replace the first stage of a
rocket or to support vehicles capable of getting to orbit
in a single stage. During launch, a small fraction of the
kinetic energy of the bolts is transferred to the vehicle.
This process can accelerate it to a velocity of 5800
km/sec at a height of 50 km. Version 2 can achieve
greater height and velocity.

Like the space elevator, the space cable can be used to
support fixed installations such as communications
facilities or an astronomical observatory. In addition,
there is likely to be a tourist market for rides on the
cable at much gentler speeds than are needed for
launching using rockets.

Both the space cable and the launch loop have the
advantage that they can be built with materials that are
already available. A significant remaining challenge is
to control lateral movement. Previously, a scheme was

described that used some fairly heavy supports and
tethers,4 but now a new technique called active cur-
vature control can be presented.

SUMMARY OF OPERATION

Each bolt travels along one tube from one surface
station to the other. There, the bolt is turned around
and sent back along another tube. On arrival at the
surface station, it is again turned around. This contin-
ues indefinitely through a pair of adjacent tubes. Typi-
cally there will be a bolt every five metres. As shown
in Figure 1, the magnetic levitation force from the
bolts is perpendicular to their direction of travel; this
combines with tension in the tubes to support the
structure. To make the space cable robust, several
pairs of tubes are used, and there are arrangements for
quiescing one pair for maintenance while the others
continue operating.
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Surface
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Figure 1  Space Cable Layout

Previous publications1,5 have described the preferred
arrangement of permanent magnets in the tubes and
the bolts, which together provide a form of magnetic
levitation. There are electronically controlled electro-
magnets to stabilize this levitation. Since the electro-
magnets are only for stabilization, the energy con-
sumption is low. Other experience of similar mixes of
permanent magnets and electromagnets in magnetic
bearings has confirmed this.6
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Overall Balance of Forces
At each surface station, there has to be enough move-
ment of the cable supports to accommodate tilting that
is sufficient to counterbalance lateral forces on the
cable. The principal source of lateral forces is from
cross winds, and the cable copes with these through
controlled bending.

It is both desirable and possible to keep the upper part
of the space cable in a stable position. At high alti-
tudes, there is little or no wind. Maintaining a stable
position here increases the usefulness of astronomical
and other instruments and simplifies the trajectory of
space vehicles during launch.

ACTIVE CURVATURE CONTROL

Any bend or bulge in a tube will cause turning of the
bolts travelling inside. This turning creates a centrifu-
gal force. Uncontrolled, the centrifugal force will in-
crease the bend or bulge indefinitely, leading to cata-
strophic instability. However, careful control allows
the centrifugal force to be exploited so as to counteract
external forces, mainly wind.

The air is calm at high altitudes (above 12-15 km) and
there are no other lateral forces, but there are cross
winds lower down. In calm air, the space cable has no
lateral bending, but it does bend in the windy region.
The technique is to measure the wind speed using a
form of anemometer and adjust the bending so as to
counteract the wind exactly. At the boundary between
these two regions, we see (as in Figure 2) that the
bending causes a change in the gradient of the space
cable lower down (i.e., nearer the surface station) but
not higher up. Part of active curvature control is en-
suring that the gradient is altered only in the lower part
of the space cable and not in the higher part. In this
way, the lateral force is transmitted down to the sur-
face station and not upwards. At the surface station,
this force can be absorbed by means of an opposite
bend, and the higher part remains stable.

To adjust the curvature over a short length of tube, we
use electronically controlled actuators. The preferred
design is to use the bolts’ own electromagnets (see
Section “Design of Actuators”). In the case of a
change of wind speed, the wind itself causes some
bending, and the purpose of the actuators is to limit
and direct that bending. As an example, consider the
sudden onset of a wind below (i.e., to the left of) point
P in Figure 2 with calm air above P. The wind bends
the tubes at P, and that bend opposes the wind. How-
ever, if it were left unchecked, the tubes would con-
tinue to bend at or near P in excess of the curvature
that balances the wind, creating instability. The ac-
tuators slow the bending until the curvature matches
the wind.

Wind

Surface
Station

Q P

Figure 2  View of Lateral Displacement

Below P, this action has the effect of causing further
bending; at each point, the actuators limit the bending
to a curvature that balances the wind. Thus the actua-
tors maintain stability; they minimize the expenditure
of energy by exploiting the effect of the wind in a
controlled way. They exert forces that restrain bending
and spread it downwards from the initial stress point at
P.

Suppose that below point Q there is no wind. Despite
the lack of wind, it is still necessary to propagate the
deflection in the lateral gradient of the tubes down to
the surface station and avoid such propagation up-
wards from P. This is achieved by local point-to-point
telemetry downwards along the tubes. Each wind sen-
sor communicates estimates of the required lateral
gradient and the actual lateral gradient to the neigh-
bouring actuator below it. It calculates this by receiv-
ing the required and actual lateral gradients from the
neighbouring actuator above it and adding the effect of
its own required curvature and actual curvature. Simi-
larly, each sensor communicates estimates of the re-
quired and actual lateral displacement to the neigh-
bouring actuator below it. The actuator then adjusts
the curvature in order to move the tubes towards the
required displacement. As the gap closes between
required and actual displacement, the estimates can be
refined, since the curvatures and gradients can be cal-
culated more accurately. As the displacement ap-
proaches the required value, the actuators reduce their
curvature until the tubes are again straight but at the
required angle all the way down to the surface station.

The next section gives the mathematical derivation for
the operation of the actuators. Section “Some Typical
Numbers” applies the formulas to the example illus-
trated in Figure 2. After that, there are some design
details, followed by conclusions.

MATHEMATICAL DERIVATION

The lateral displacements z1 and z2 of a pair of tubes in
which bolts travel in opposing directions have been
shown4 to obey the following partial differential equa-
tions:
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Here, t is time and x is distance along the tubes. The
equations assume that the tubes are connected by
struts spaced u apart that exert an equal and opposite
force Fs on each tube. Each section of tube of length u
is subject to an external force F. The tubes carry bolts
of average mass mb per distance u travelling in op-
posing directions at velocity V. The combined mass of
a bolt and tube over distance u is mu. There is a tension
T in each tube.

We now dispense with the struts and join the two
tubes together. Then zzz == 21  and we obtain a sin-
gle equation by summing, slightly simplified by set-
ting 1=u  so that F, mb and mu are taken over unit
distance:
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This equation makes clear that the curvature term
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M has been taken as constant, since the variation due
to gravity is small compared to the wind forces now
under consideration.
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the external force along the tubes, and Ba is an extra
effect, the bending compensation due to the actuators.

For any pattern of wind, there is a stable arrangement
of the cable. To see this, consider a required displace-
ment rz  that satisfies for all x the equation
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To restore stability when the wind changes, it is neces-
sary to move the cable to the new stable arrangement.
As Figure 3 illustrates, the wind itself tends to push
the cable towards the stable position. The job of the
control mechanism is to limit the movement and
spread it more evenly, using the curvature control to
ensure that the cable’s curvature reaches but does not
overshoot a value that satisfies equation (6) at every

point. To achieve this goal, the actuators adjust the
bending compensation Ba to cause the cable’s curva-
ture c to change. It is convenient to define a compound
bending quantity Bc such that
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Figure 3  Exaggerated View of Lateral Displacement

The bending quantity Bc incorporates the external
effect caused by the wind varying along the tube’s
length. We assume that B can be estimated from the
wind force F. Similarly we assume that the accelera-

tion in wind force 2
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By the definition of B, this is
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Now we introduce an intermediate curvature cc. The
intermediate curvature is designed to cause the cable
to move itself from displacement z to the required
displacement zr. It incorporates the wind force and a
constant λ , which is subject to certain constraints that
are to be determined. It is defined as follows.

)( rrc zzcc −−= λ (10)
The definition of cc allows for the effect of wind but
also addresses the case where a lower part of the cable
must move from displacement z to zr to accommodate
wind higher up. As the cable moves from z to zr, the
intermediate curvature converges to the required cur-
vature cr.

It is therefore necessary to set Ba so that the curvature
is drawn to the intermediate value cc. This is achieved
by setting the following value for Bc from which Ba
can be derived by equation (7).
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The final term with a factor κ  is for damping. For
later simplicity, it is based directly on the target cur-
vature cr rather than cc. The constants ε  and κ  are
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subject to certain constraints to be determined. The
minus signs have been chosen for later convenience.

Where the wind is already blowing the cable towards
displacement zr, the curvature has to adjust to oppose
the wind, as desired. At lower parts of the cable, if
there is less wind, it is necessary to bend it deliberately
so that it aligns to support the region under wind
stress.

Simplify equation (10) by substituting rzzz −=′  to
give

zcc rc ′−= λ (12)
Substituting into equation (11) yields
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We also have, from equations (9) and (14)
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Equations (15) and (16) combine to give the final
equation governing the operation of the active curva-
ture control mechanism as follows.
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Solution to the Curvature Control Equation

Equation (17) has solutions of the form xtez φψγ +=′
leading to the following equation in ψ  and φ

022422 =++++ ψκφελεφφψφ Mm (18)

Equation (18) expresses the relationship between ψ
and φ , and so it represents a family of solutions. The
general solution may be written as a continuous inte-
gral, treating ψ  as a function of φ .
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This has the form of an inverse Laplace transform,7
which is closely related to the Fourier transform but
allows for φ  to be complex. The limits have been
taken on the assumption that φ  is complex. The inte-
gral has to follow a contour in the complex plane, and
this has the form of a real constant c plus an imaginary
value ranging between ±∞ . The constant A in the
Laplace transform is iA π21= , where 1−=i .

The quantities ψ  and φ  are complex in general. To
obtain solutions that converge over time, the real part

of ψ  in equation (19) should be negative. Equation
(18) is quadratic in ψ  with the solution
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This simplifies to the form
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The real part of ψ  is definitely negative if κ  is real,

0>κ , and
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It is helpful to insert a factor H as follows.
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H is between 0 and 1 and permits control over the
speed of convergence by ensuring that ψ  is not too
near to zero while remaining negative. In fact,
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For example if 9.0=H , m20κψ −< .

Details of Convergence Condition
Inequality (21) is true if
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Let µφ ieΦ=  with Φ  and µ  real. Then
)2sin2(cos2222 µµφ µ ie i +Φ=Φ=

and )2sin2(cos2222 µµφ µ ie i −Φ=Φ= −−−−

The constants εκ ,  and λ  are real, so inequality (23)
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Write 22 −Φ+Φ= ελMG  and divide by m8 .
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Range of G
The quadratic expression in inequality (24) is positive
for large G. It is therefore necessary to choose values
for the constants εκ ,  and λ  that ensure that the ex-
pression is negative over the physically possible range
of values of G. The minimum value of G is found by
differentiating it with respect to Φ  and taking

022 3 =Φ−Φ= −ελM
dF
dG

When Mελ=Φ4  this gives the minimum value for
G of
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ελMG 2min = (25)

The maximum of G depends on the maximum and
minimum values of Φ . In the solution to equation
(17), xtez φψγ +=′ . Now write WiE πφ 2+=  to see
that the complex value φ  represents a standing wave
in the cable of wavelength W modified by a real expo-
nential term E giving WixExt eeez πψγ 2=′  and
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The maximum value of G depends on both the mini-
mum and maximum values of W and E. There are two
potential maxima 2G  and 2−G , and
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Since both ends of the space cable are anchored, the
maximum wavelength is twice the cable length. The
minimum wavelength minW  is of the same order as the
size of an active element of an actuator. The largest
exponent maxE  is found by considering the greatest
deflection maxD  that can occur over the range Rx  at
which winds operate:
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The smallest exponent minE  is zero, which enables
equation (28) to be simplified as follows.
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Section “Some Typical Numbers” includes estimates
of the numbers in 2G  and 2−G .

Finding ελ
Because of equation (26), it makes sense to choose
ελ  so that 22 GG ≈− . Therefore, set
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Because minmax WW >> , this simplifies to
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Finding ε
In equation (24) it would be convenient to set

εκ m42 = , but it is derived from equation (13), and
the quantities in equation (13) involve estimation. It is
therefore more realistic to write

νεκ −= m42 (32)
for a small value ν . Equation (24) then becomes

08)1()4(    
)2sin82(2cos2

42

22

<−−+

−+−+

mHm
mMmGmG

νε
νµλεεµν

(33)

The roots ±G  of equation (33) are given by
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It is clear from equation (34) that −G  is negative and

so satisfies ελMGG 2min =≤−  as required by equa-
tion (25). It remains to show that we can choose ε
and λ  so that maxGG ≥+ , that is
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The second-order small terms in 2ν  have been dis-
carded and a small element m4ν  added to maxG  to
cover the uncertainty of the sign of µν 2cos . Write

mGG 4maxmax ν+=′  in inequality (35):
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Since the term in µ2sin2  may vary between zero and
one, the inequality is satisfied without this term pro-
vided that 0>ελ . We therefore arrive at a quadratic
equation in ε  as follows.
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In fact, the requirement is more simply met (and
slightly over-fulfilled) by setting

mH
G νε += 2

max (37)

Because 22 GG ≈− , we can take 2max −≈GG . Then
from equations (30) and (31)
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This completes the derivation of values of ε  and λ
that ensure convergence of the solution for all physi-
cally possible values of φ  and ψ .

DESIGN OF ACTUATORS

The purpose of the actuators is to vary the bending
compensation Ba according to the equations. The op-
tions are either to use servo or solenoid mechanisms
external to a pair of tubes or to rely on somewhat more
sophisticated electronics to adjust the electromagnets
on each bolt.

An external mechanism has the drawback that it adds
to the weight and to the bulk. The bulk will increase
the wind resistance and will make the design of the
bearer for launch vehicles more complicated. How-
ever, it has the advantage that it does not have to be
provided along the whole length of the space cable but
only where wind may be encountered.

Using the bolts’ own electronics reduces the number
of moving parts and so simplifies the mechanical de-
sign. The electromagnets are already present on the
bolts to enable them to perform their primary function
of levitating the tube. The bending compensation is an
additional factor that amounts to providing differential
forces between the middle and the ends of each bolt.
In view of the reliability and cheapness of electronics
today, this is the preferred design.

Wind sensors are required outside the tubes. In the
preferred design, they communicate the needed infor-
mation to the bolts on the inside as they come past.
Electronics associated with the wind sensors performs
the calculations necessary to determine the value of Ba
in equations (7) and (13) and passes this value to each
bolt. A very simple communication mechanism is
proposed: the frequency of an oscillator in the tube

represents the value of Ba and is passed to the bolts by
inductive or capacitative coupling.

Above the windy zone, occasional correction in posi-
tion can be performed if the bolts are used as actua-
tors. A few position sensors, probably using GPS, can
be used to check long-term stability.

SUPPORT AT THE SURFACE STATIONS

Previous calculations1 for the support structures at the
surface stations are still applicable with the introduc-
tion of active curvature control. In the design of Ver-
sion 1, the supports consist of a 400-metre tunnel, a
200 metre gantry and over 300 metres of support
tubes. The support tubes are steerable so that they can
vary both the angle of inclination of the main tubes
and their lateral deflection. The cautious assumptions
made were that there might be a deflection of up to
14° on top of a substantial angle of inclination while
the space cable is being erected.

The support tubes use the same technology of bolt
levitation as the main tubes but are much smaller. One
advantage over the previous design assumptions is that
the combination of wind force and active curvature
control cause the space cable to move with the wind;
the support tubes do not have to provide the power to
deflect it. Rather, there is in principle a source of
power that could be captured at the surface station as
the cable moves in response to changes in wind.
Whether this is a worthwhile source of power is moot,
as it depends on gusts and changes, but at least it need
not consume much power.

SOME TYPICAL NUMBERS

To obtain a value for ε  from equation (38), we need
values for M, H, maxE  and minW . Now TVmM b −= 2 .
Previous work on Version 11 has taken the average
bolt mass bm  as 2 kg/metre and the velocity V as 2.5
km/sec. As the tension T is low at these altitudes, this
gives 71025.1 ×≈M .

In the preferred design, the bolts perform the role of
actuators. The lowest wavelength they can accommo-
date is twice the length of a bolt. Below this wave-
length, the stiffness of the bolt itself prevents waves,
as explained before.4 A bolt is 1 metre long, and so

2min =W .

Example for finding Emax

To find maxE  consider an extreme example in which
there is initially no wind until a crosswind suddenly
commences between the heights of 6 km and 12 km.
Suppose that this wind operates from one side to an-
other and is uniform along this length.
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Figure 4  Displacement in Progress

Initially the cable is in a vertical plane at an angle to
the horizontal of about 60°. The length l of the windy
part of the cable is o60sin6 , or about 7 km. The
lower part where there is no wind has approximately
the same length (L=l). After the onset of the wind, the
lateral displacement moves from zero to a curve that
exactly opposes the wind. As illustrated in Figure 4,
this causes the lower part of the cable to line up at an
angle, thus transmitting the wind force to the ground
station.

The curvature to oppose the wind is given by
MFcr =  from equation (6). If the wind force is at

the predicted maximum of 50 Newtons/metre, the
radius of curvature rr cr 1=  is about 5105×  metres.
The angle θ  subtended by this curved section at the
centre of radius is approximately

014.0
105
107

5

3

=
×
×

≈=
rr
lθ  radians or about 1½°. Then

the lateral displacement at point Q in Figure 4 is given
by 492/014.0107sin 3

2 =××≈= θld  metres. The
displacement at the ground is θsinLdD += . This
comes to 147014.010749 3 =××+≈D  metres.

Because this is an extreme example, we can take this
value of D as maxD  in equation (29) with LlxR += ,

giving 4
max 106.3 −×=E .

Values of ε, κ and ελ

Having values of 71025.1 ×≈M , 4
max 106.3 −×≈E

and 2min =W , take H=0.9 in equation (38) to get:
8105.1 ×≈ε .

Previous work has taken the average mass m (bolt plus
tube) as 3 kg/metre, making 4102.44 ×≈≈ εκ m
from equation (32).  Thus and from equation (22),
since xtez φψγ +=′ , the temporal convergence of the
cable is governed by a negative exponential term

70−<ψ . This will ensure quick convergence.

To obtain ελ  from equation (31), the value of maxW  is
needed. Since the space cable is anchored at both ends,
the maximum wavelength is twice the cable length,

making maxW  about 700 km in Version 2 and half that
in Version 1. Taking the greater value gives 1.0≈ελ .

Forces in an Actuator
As the bolts are being used both for levitation and as
curvature actuators, it is useful to consider the forces
needed. In previous work1 the maximum magnetic
force per bolt for levitation is given as 570 Newtons
and is provided by three pairs of electromagnets in-
clined at angles of 45°. Each magnet therefore needs
to exert forces up to 570/3√2 Newtons, i.e., up to 135
Newtons. The actuators exert a bending compensation

aB  by altering the forces in these magnets, but they
still need to have the same sum.

Let the end forces and middle force be eF  and mF
respectively and the distance between them be al ,
which is half the bolt length. Then aB  is the discrete
equivalent of the second partial derivative of the force
with respect to x.

22)()(

a

me

a

aemame
a l

FF
l

lFFlFFB −
=

−−−
=

In the example, the wind force F is constant after its
sudden start, and so equation (7) implies ca BB =  in
this case. Equation (13) then gives values for aB . In

the example, the curvature 6102 −×=rc  and so the
)( rcc −ε  term in equation (13) is approximately 300,

which represents a maximum. The damping term

)( rcc
t

−
∂
∂κ  will tend to oppose )( rcc −ε , but the

value of 300 remains the overall maximum. The con-
tribution from the term z′ελ  between points P and Q
in Figure 4 is up to 5 and can reach a value of 15 near
the surface station.

Taking 300≈aB  and 5.0=al , the force difference

aame BlFF 2
2
1=−  is about 38 Newtons. This variation

amounts to a modest 25±  Newtons on the previously
calculated maximum of 135 Newtons per electromag-
net, although even this requirement can be relaxed, as
strong winds occur only at low altitudes where the
required levitation force is much lower.

Discussion of the Example
Referring to equation (4) and Figure 4, the bending
stress B due to wind is non-zero in this example only
at points P and Q where the wind changes. At these

two points the curvature derivative 2

2

x
c

∂
∂  is non zero,

and it matches the value of B at that point. Since

02

2

=
∂
∂

t
c  in the stable position, only very small bend-

ing stresses aB  have to be applied by the curvature
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actuators anywhere to maintain stability until the wind
changes.

At the initial onset of the crosswind, it is necessary for
the curvature actuators to adjust according to the
equations so as to ensure a smooth transition to the
new stable position. Without active curvature control,
the section PQ of the cable would accelerate en bloc
with the wind.

At point P, the bending stress B is caused by the pres-
ence of the wind force below P at 50 Newtons/metre
but zero above P. Let the actuator length be al . Then
the bending stress is averaged over al . At point P:

aa

a

l
F

l
FlB == 2 (39)

As a working assumption, the actuators are taken to be
1 metre long, and so the bending stress is averaged
over a metre. The value is thus 50 Newtons/metre2.
Initially, the curvature actuators transmit this bending
stress along the cable below P until the cable reaches
the stable position rz  and curvature rc . None of the
bending stress is transmitted above P, since the cable
above P is already in the stable position. Below and
near to P the cable soon reaches the stable position,
and the bending stress drops to zero. This can be seen
from equations (4), (7) and (13), which may be com-
bined as follows.

2

2

2

2

)()()(

t
F

M
mB

x
cM

cc
t

zzccB rrra

∂
∂

+−
∂
∂

+

−
∂
∂

−−−−−= κελε
(40)

Below and near to P the dominant term initially is
)( rcc −ε , since the cable is already close to the target

displacement rz . As the cable moves, the curvature c
reaches its target value first near P and later lower
down. Thus there is a variation in the curvature due to
the fact that lower parts of the cable have further to go
to reach their target positions and curvatures. This is

reflected in a significant value for the term 2

2

x
cM

∂
∂ .

At P, this term eventually balances the bending stress
B, and the other terms drop to zero. Below P, as the
cable approaches the stable position, all the terms drop

to zero (or close to it), including 2

2

x
cM

∂
∂ . Nearer point

Q, the term )( rzz −ελ  assumes greater significance
during the movement, as the distance for the cable to
travel is up to 49 metres.

At Q, there is an external bending stress B. Its initial
effect is to cause the cable to curve in the direction
that helps it to reach its target position rz . The damp-

ing term )( rcc
t

−
∂
∂κ  partly resists this change to

ensure smooth movement. There is a fairly compli-
cated interplay between the other terms until eventu-

ally the stable position is reached. Below Q, the domi-
nant term is )( rzz −ελ , which causes the cable to
form a bow shape (Figure 4). This is related to the
intermediate curvature referred to as cc  and defined in
equation (10). It effectively spreads the effect of the
bending stress at Q so as to move the whole of the
cable below Q towards the required position rz .

CONCLUSION

The solution to the problem of ensuring lateral stabil-
ity in the presence of cross winds has been shown to
be possible using electromagnetic forces controlled
electronically. It remains to verify this solution using
computer simulation and eventually working models.
In the meantime, there is further mathematical work to
do to adapt this solution to the slightly more compli-
cated case of stability in the plane of the space cable
and also to examine the effect of winds longitudinally
along the tubes.

In view of the common use of electronics for fly-by-
wire systems in commercial aircraft, the reliability of
electronic controls is now well established. They are
generally more efficient than comparable mechanical
solutions. Certainly, the solution presented here is
much lighter in weight than that presented before4 and
is likely to be more cost effective.
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